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Abstract. Keldysh’s nonequilibrium Green function is used to study the electron tunnelling
through a quantum dot. Two kinds of intra-dot electron–electron (e–e) interaction are introduced:
Un for the interaction at the same energy leveln with different spins, andVnσ,mσ ′ for the
interaction between different levelsn andm. General formulas of the time-varying currentj (t)
and the averaged current〈j (t)〉 are derived when the external fields are applied to the system.
In the time-independent linear response regime, our calculation demonstrates that the interval
of the Coulomb oscillation peaks is mainly determined byVnσ,mσ ′ which is always smaller than
Un. When the external microwave (MW) fields are applied to the system, we obtain: (1) The
j (t) may become negative for a certain period of time, even if the chemical potentialµL(t) is
larger thanµR(t) all the time. (2) The calculated structure of the Coulomb oscillation peaks (in
asymmetric MW fields) is in good agreement with the experimental results of Kouwenhovenet
al . (3) For the symmetric MW field case, our theoretical results are well consistent with the
experiments of Blicket al and Drexleret al.

1. Introduction

Mesoscopic physics, a new branch of condensed matter physics, has been developed and
become an active field in the last decade. The quantum transport property of the mesoscopic
systems is one of the most striking phenomena. Because of the possibility of designing and
fabricating artificial structures, the studies on transport are no longer limited to the systems
provided by nature, and have opened an extremely rich field for basic and applied researches
[1, 2].

The mesoscopic transport properties studied so far are mainly related to steady-state
processes. Recently, the time-dependent transport phenomena have been attracting more
and more attention. The essential feature of mesoscopic physics is the phase coherence of
the charge carriers. For the time-dependent processes, generally, the external time-dependent
perturbation affects the phase coherence differently in different parts of the system [3, 4].
A new energy scale ¯hω in the time-dependent problem appears. A number of new effects
have been observed such as the photon–electron pump, the sideband effect, the turnstiles,
the ac response in resonant-tunnelling devices, etc.

Theoretically, Tien and Gordon studied the effect of MW radiation on superconducting
tunnelling devices back in the early sixties [5]. Since then, different theoretical approaches
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have been developed, such as the time-dependent Schrödinger equation [6, 7, 8], the
transfer Hamiltonian [2, 9], the Master equation [10, 11], the Wigner function [12] and
the nonequilibrium-Green-function method [3, 4, 13, 14].

Although for many mesoscopic systems the electron–electron interaction is not important
and the single-electron approximation can be used very well, quite a few phenomena exist
in which the electron–electron interaction plays a crucial role. The well known example is
the Coulomb blockade.

In this paper we consider a quantum dot with multiple energy levels and coupled to two
leads. Two kinds of intra-dot Coulomb interaction are introduced:Un for the interaction at
the same leveln with different spins;Vnσ,mσ ′ for the interaction between the different levels
n andm. Moreover, time-dependent external fields are applied to the two leads and the
dot. By using the nonequilibrium-Green-function method, the general formulas of the time-
varying currentj (t) and the averaged current〈j (t)〉 are derived. In the time-independent
linear response regime, our calculation demonstrates that the interval between the Coulomb
oscillation peaks is mainly determined by the interactionVnσ,mσ ′ which is always smaller
than the interactionUn. When external microwave (MW) fields are applied to the system, we
obtain: (1) Thej (t) may become negative for a certain period of time, even if the chemical
potentialµL(t) is larger thanµR(t) all the time. This new feature is quite different from the
classical current–voltage character and is a manifestation of the phase coherent time-varying
behaviour of the mesoscopic system. (2) For the asymmetric MW field case, the calculated
structure of the Coulomb oscillation peaks is in good agreement with the experimental
results of Kouwenhovenet al [15]. (3) For the symmetric MW field case, our theoretical
studies show that some additional peaks emerge in the curves of〈j〉 against gate voltagevg,
which are well consistent with the experiments of Blicket al [16] and Drexleret al [17].
In particular, we present a clear explanation for the peak marked with ‘X’ in the paper by
Blick et al which has not been understood before.

In order to use the nonequilibrium-Green-function method for time-dependent processes,
the frequencies of the external fields must be limited, and the upper limit can be up to tens
of THz [3]. In this situation, one can use the adiabatic approximation, i.e. the external fields
do not change the electronic distribution function directly, instead, the fields only change
the single-electron energies adiabatically.

The outline of this paper is as follows. In section 2, the model is presented and
the Keldysh nonequilibrium Green function is used to derive the time-dependent current
formulas. In section 3, we study the time-independent case. The effects of the external
MW fields are studied in section 4. A brief summary is presented in section 5.

2. Model and formulation

We assume that the system under consideration is described by the following Hamiltonian
H(t):

H(t) = Hlead(t)+Hdot (t)+HT
where

Hlead(t) =
∑
k∈L,σ

εkσ (t)a
†
kσ akσ +

∑
p∈R,σ

εpσ (t)b
†
pσ bpσ

Hdot (t) =
∑
nσ

εnσ (t)c
†
nσ cnσ +

∑
n

Unc
†
n↑cn↑c

†
n↓cn↓
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+ 1

2

∑
nσ,mσ ′(n6=m)

Vnσ,mσ ′c
†
nσ cnσ c

†
mσ ′cmσ ′ (1)

HT =
∑
k,nσ

Lkσ,nσ a
†
kσ cnσ +

∑
p,nσ

Rpσ,nσ b
†
pσ cnσ + HC.

Hlead(t) describes noninteracting electrons in the leads,a
†
kσ (akσ ) and b†pσ (bpσ ) are the

creation (annihination) operators of the electron in the left and the right lead, respectively.
TheHdot (t) models the quantum dot with multiple energy levels by indexn and the spin
σ . Two kinds of intra-dot Coulomb interaction are introduced:Un for the e–e interaction
between the electrons at the same energy leveln with different spins, andVnσ,mσ ′ between
the electrons with different energy levels.HT denotes the tunnelling part which is time
independent. Under the adiabatic approximation, the time-dependent external fields can
be contained in the single-electron energiesεασ (t) (whereα = n, k, p corresponds to the
dot, the left lead and the right lead, respectively). However, the distribution of occupation
of electrons in the leads remains unchanged [3, 4]. We separateεασ (t) into two parts:
εασ (t) = εασ + 1β(t), whereβ = L,R, d corresponds to the left lead, the right lead
and the dot, respectively;εασ is the time-independent single-electron energies without the
time-dependent external fields, and1β(t) is a time-dependent part from the external fields.

Following the procedure of Wingreenet al [3, 4], we derive the general time-dependent
current formulaj (t) by using the nonequilibrium-Green-function technique. The current
from the left lead to the quantum dot can be calculated from the evolution of the total
number operator of the electrons of the left lead,NL =

∑
kσ a

†
kσ akσ . Then one finds (in

units of h̄ = 1)

jL(t) = −e〈ṄL〉 = ie〈[NL,H(t)]〉 = 2eRe
∑
k,nσ

Lkσ,nσG
<
nσ,kσ (t, t). (2)

Here we define the Green functionG<
nσ,kσ (t, t

′) ≡ i〈a†kσ (t ′)cnσ (t)〉. With the help of the
Dyson equation, the Green functionG<

nσ,kσ (t, t
′) can be written as:

G<
nσ,kσ (t, t

′) =
∑
n′

∫
dt1L

∗
kσ,n′σ

[
Gr
nσ,n′σ (t, t1)g

<
kσ (t1, t

′)+G<
nσ,n′σ (t, t1)g

a
kσ (t1, t

′)
]

(3)

whereGr
nσ,n′σ (t, t1) ≡ −iθ(t − t1)〈{cnσ (t), c†n′σ (t1)}〉, G<

nσ,n′σ (t, t1) ≡ i〈c†n′σ (t1)cnσ (t)〉, and
g<kσ , gakσ are the exact Green functions of the electron in the left lead without coupling
between the leads and the dot. Substituting the expression ofG<

nσ,kσ (t, t) into (2), the sum
over k,

∑
kσ , can be changed into an integral with the help of the density of states in the

left leads,
∑

σ

∫
dε ρσL(ε). It is useful to define:

0Lnσ,n′σ (ε, t1, t) = 2πρσL(ε)Lnσ (ε) [Ln′σ (ε)]
∗ e−i

∫ t1
t
1L(t2) dt2 (4)

whereLnσ (εk) = Lkσ,nσ . In terms of this generalized linewidth function0Lnσ,n′σ (ε, t1, t),
the time-dependent currentjL(t) becomes:

jL(t) = −2eIm
∫ t

−∞
dt1

∫
dε

2π

∑
n,n′σ

{
e−iε(t1−t) 0Lnσ,n′σ (ε, t1, t)

×
[
G<
nσ,n′σ

(
t, t1

)+ fL(ε)Gr
nσ,n′σ

(
t, t1

)]}
(5)

wherefL(ε) is the Fermi distribution function in the left lead.
Then we have to calculate the Green functionsGr

nσ,n′σ (t, t1) andG<
nσ,n′σ (t, t

′).
Gr
nσ,n′σ (t, t1) can be obtained from the equation of motion (EOM). Notice thatVnσ,n′σ ′ =
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Vn′σ ′,nσ , then we have[
i
∂

∂t
− εnσ

]
Gr
nσ,n′σ (t, t1) = δ(t − t ′)δn,n′ − iUnθ(t − t ′)〈{N̂nσ̄ (t)cnσ (t), c†n′σ (t ′)}〉

− iθ(t − t ′)
∑

n1σ1(n1 6=n)
Vnσ,n1σ1〈{N̂n1σ1(t)cnσ (t), c

†
n′σ (t

′)}〉

+
∑
kσ

L∗kσ,nσG
r
kσ,n′σ (t, t

′)+
∑
pσ

R∗pσ,nσG
r
pσ,n′σ (t, t

′) (6)

where N̂nσ (t) ≡ c
†
nσ (t)cnσ (t) is the occupation number operator of the state (n, σ ). The

two new Green functionsGr
kσ,n′σ (t, t

′) and Gr
pσ,n′σ (t, t

′) are defined asGr
kσ,n′σ (t, t

′) ≡
−iθ(t − t ′)〈akσ (t), c†n′σ (t ′)〉 andGr

pσ,n′σ (t, t
′) ≡ −iθ(t − t ′)〈bpσ (t), c†n′σ (t ′)〉. In solving (6),

the new Green functions must be expressed in terms ofGr
n1σ,n2σ

(t, t ′) in order to close the
equation of the Green functionGr

nσ,n′σ (t, t
′). Therefore, the higher-order two-particle Green

functions〈{N̂nσ̄ (t)cnσ (t), c†n′σ (t ′)}〉 and 〈{N̂n1σ1(t)cnσ (t), c
†
n′σ (t

′)}〉 must be decoupled. We
take the following decoupling approximation:{

〈{N̂nσ̄ (t)cnσ (t), c†n′σ (t ′)}〉 ≈ Nnσ̄ (t)〈{cnσ (t), c†n′σ (t ′)}〉
〈{N̂n1σ1(t)cnσ (t), c

†
n′σ (t

′)}〉 ≈ Nn1σ1(t)〈{cnσ (t), c†n′σ (t ′)}〉
(7)

whereNnσ (t) = 〈N̂nσ (t)〉 is the occupation number of the state (n, σ ). Under the conditions
of low temperaturekBT � 1ε (here1ε is the energy level spacing, but degenerate state
1ε = 0 is permitted) and small bias voltage, the above decoupling approximation is quite
reasonable. The retarded Green functionsGr

kσ,n′σ (t, t
′) andGr

pσ,n′σ (t, t
′) can be obtained

by Dyson’s equation:

Gr
kσ,n′σ (t, t

′) =
∑
n2

Lkσ,n2σ

∫
dt1 g

r
kσ (t, t1)G

r
n2σ,n′σ (t1, t

′)

Gr
pσ,n′σ (t, t

′) =
∑
n2

Rpσ,n2σ

∫
dt1g

r
pσ (t, t1)G

r
n2σ,n′σ (t1, t

′).
(8)

Under the wide-bandwidth approximation, the linewidth0αnσ,n′σ (ε) = 2πρσα (ε)αnσ (ε)
[αn′σ (ε)]

∗ ≡ 0α (whereα = L,R) is a constant, independent ofε, n, n′, andσ . Introducing
the notationEnσ (t), Enσ (t) ≡ εnσ (t) + UnNnσ̄ (t) +

∑
n1σ1(n1 6=n) Vnσ,n1σ1Nn1σ1(t), then (6)

reduces to

Gr
nσ,n′σ (t, t

′) = grnσ (t, t ′)δnn′ −
i0

2

∫ t

t ′
dt1 g

r
nσ (t, t1)

∑
n1

Gr
n1σ,n′σ (t1, t

′) (9)

where0 = 0L+0R andgrnσ (t, t
′) ≡ −iθ(t− t ′) exp{−i

∫ t
t ′ Enσ (t1) dt1}. In the following we

use the cumulant expansion method to calculate the retarded Green functionGr
nσ,n′σ (t, t

′).
Notice that usually we have eitherEnσ (t) = En′σ (t) or Enσ (t) − En′σ (t) � 0. Let Dnσ

indicate the degeneracy of the energy levelnσ (not including the spin degeneracy); we
obtain

Gr
nσ,nσ (t, t

′) = (1/Dnσ

)
grnσ (t, t

′)
{
Dnσ − 1+ exp

{−(Dnσ0/2
)
(t − t ′)}}

Gr
nσ,n′σ (t, t

′) = (1/Dnσ

)
grnσ (t, t

′)
{
exp

{−(Dnσ0/2
)
(t − t ′)}− 1

}
while Enσ (t) = En′σ (t)

Gr
nσ,n′σ (t, t

′) = 0

while Enσ (t) 6= En′σ (t).

(10)
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DefiningGr
nσ (t, t

′) asGr
nσ (t, t

′) ≡∑n′ G
r
nσ,n′σ (t, t

′), we have

Gr
nσ (t, t

′) ≡
∑
n′
Gr
nσ,n′σ (t, t

′) = grnσ (t, t ′) exp

{
−Dnσ0

2
(t − t ′)

}
. (11)

The next step is to calculateG<
nσ,n′σ (t, t

′). By using the Keldysh equationG< =
(1+Gr6r)g<(1+ 6aGa)+Gr6<Ga and the self-energy functions6r , 6a, 6<, andg<

which can be easily derived under the wide-bandwidth approximation:

6r
nσ,n′σ (t1, t2) = −

i0

2
δ(t1− t2)

6a
nσ,n′σ (t1, t2) =

i0

2
δ(t1− t2)

6<
nσ,n′σ (t1, t2) = i

∫
dε

2π

{
fL(ε)0

L(t1, t2)+ fR(ε)0R(t1, t2)
}

e−iε(t1−t2)

g<nσ,n′σ (t, t
′) = iδn,n′ 〈Nnσ 〉 exp

{
−i
∫ t

t ′
Enσ (t1) dt1

}
.

(12)

UsingGa
nσ (t, t

′) ≡∑n′ G
a
n′σ,nσ = [Gr

nσ (t
′, t)]∗ yields

G<
nσ,nσ (t, t

′) =
(

1− 1

Dnσ

)
g<nσ (t, t

′)+
∫ ∫

dt1 dt2G
r
nσ (t, t1)6

<(t1, t2)G
a
nσ (t2, t

′)

G<
nσ,n′σ (t, t

′) = − 1

Dnσ

g<nσ (t, t
′)+

∫ ∫
dt1 dt2G

r
nσ (t, t1)6

<(t1, t2)G
a
nσ (t2, t

′)

while Enσ (t) = En′σ (t)
G<
nσ,n′σ (t, t

′) = 0 while Enσ (t) 6= En′σ (t).

(13)

IntroducingAαnσ (ε, t) (whereα = L,R)

Aαnσ (ε, t) =
∫ t

−∞
dt1G

r
nσ (t, t1) exp

{
−iε(t1− t)− i

∫ t1

t

1α(t2) dt2

}
(14)

and substituting (11), (13) into (5), we finally obtain the time-dependent current formula

jL(t) = −e0L
∑
α=L,R

∑
nσ

∫
dε

2π
fα(ε)Dnσ0

α|Aαnσ (ε, t)|2

− 2e0L
∑
nσ

∫
dε

2π
fL(ε)ImA

L
nσ (ε, t). (15)

SinceNnσ (t) = ImG<
nσ,nσ (t, t), the electron occupation number at the state (nσ ) in the dot,

Nnσ (t), should be calculated by the following self-consistent equation

Nnσ (t) =
(

1− 1

Dnσ

)
〈Nnσ 〉 +

∑
α=L,R

∫
dε

2π
fα(ε)0

α|Aαnσ (ε, t)|2. (16)

Using 〈j (t)〉 = 〈jL(t)〉 = 〈jR(t)〉, we can obtain the averaged current〈j (t)〉 defined as

〈j (t)〉 ≡ lim
τ→∞

1

2τ

∫ τ

−τ
dt1 j (t1) = 2e

0L0R

0

∑
nσ

∫
dε

2π

[
fR(ε) Im〈ARnσ (ε, t)〉

−fL(ε) Im〈ALnσ (ε, t)〉
]
. (17)

The expressions of the time-dependent currentjL(t) (15) and the averaged current〈j (t)〉
(17) are the central results of this work. They can be applied to a variety of quantum dot
structures with multiple levels, intra-dot Coulomb interaction and external time-dependent
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perturbations. In the next two sections we shall apply our current formulas to two particular
cases: the time-independent linear response situation and the time-dependent situation in
the presence of external MW fields.

3. The time-independent case

In the time-independent case, we simply let1α(t) = 0 (α = L,R, d), then theEnσ (t),
Nnσ (t), andj (t) become time independent. By Fourier transformation we can go over to
the energy variable, and easily findAαnσ (ε, t) (α = L,R)

Aαnσ (ε) =
1

Enσ − ε − iDnσ0/2
. (18)

Substituting (18) into (17), the currentj is obtained as

j = e0L0R
∑
nσ

Dnσ

∫
dε

2π
{fL(ε)− fR(ε)} 1

(ε − Enσ )2+ (Dnσ0/2)2
. (19)

The self-consistent equation (17) of the electron occupation numberNnσ becomes

Nnσ = Dnσ

∫
dε

2π
{fL(ε)0L + fR(ε)0R} 1

(ε − Enσ )2+ (Dnσ0/2)2
. (20)

Using (19) and (20) we can evaluate the currentj with arbitrary intra-dot e–e Coulomb
interaction.

In the following we shall focus on the linear response regime and consider the effect of
the Coulomb interactions on the period of the Coulomb oscillation, i.e. the interval between
the two neighbouring peaks. We make the further simplications (as in most of the literature):
(1) Let Un ≡ U andVnσ,n′σ ′ ≡ V ; both are independent ofn, σ, n′, σ ′. (2) Let εkσ , εpσ
and εnσ be independent of spinσ (not considering the magnetic fields). (3) Let the two
barriers be symmetric, i.e.0L = 0R ≡ 0. (4) The temperatureT is taken to be zero. In our
numerical calculation we take the units ofe = 1. Figure 1 shows the currentj against gate
voltagevg = −ε1 at small bias voltage. One notices that ifU < V two series of peaks with
different intervals emerge (see figure 1(a)); whileU > V only one series of peaks appears
with almost the same intervalV +1ε (see figure 1(b)) (if we neglect the small diifference
stemming from1ε).

Although if U = 0 (a special case ofU < V ) but V 6= 0, one also has a series
of equal-interval oscillation peaks, if one uses the same values ofU and V to describe
the turnstile effect, one will find that the height of the steps in the current–voltage curve
will be 2 ef (where f is the frequency of the external field) instead of 1ef . This is
inconsistent with the experimental result of the turnstile effect [18]. Therefore we come to
the conclusion that the interval of the Coulomb oscillation peaks is mainly determined by
the smaller interactionVnσ,mσ ′ , not by the larger interaction,U . Here we would point out
that the Coulomb interaction used in the spinless-electron quantum dot model [19] (usually
denoted byU ) is in factV of this work.

Why is the interval of the Coulomb oscillation peaks more or less the same and mainly
determined by the smaller interaction,V , not the larger one,U? It can be understood
with the help of figure 2 which schematically describes the electronic energy levels of the
quantum dot for a specific number of electrons, including the e–e interactions. Figure 2
is constructed by the following rules: (1) Electrons always occupy the lowest unoccupied
states. (2) After the occupation by an electron of the statenσ with the energy ofεnσ , the
state energyεnσ̄ will be increased byU , and all other states will be increased byV . A
Coulomb oscillation peak corresponds to the addition of an electron to the dot [20], and
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Figure 1. j againstvg for a quantum dot at small bias dc voltagev = µL − µR = 0.1
(µL = 0.1, µR = 0), showing the Coulomb-blockade oscillations. There are ten energy levels
with 1ε = 0.1 and0 = 0.04. (a)U = 1, V = 2. (b)U = 3, V = 1.

the interval of the peaks is the difference between the lowest unoccupied level and the
highest occupied level. Figure 2(a), (b), and (c) show the electronic energy levels for the
three lowest electron numbers (N ) in the dot,N = 0, 1, and 2, respectively. Starting from
the lowest state, the electrons will occupy the next higher states one by one:(1σ1), (2σ2),
(3σ3), . . .. It can be easily found that the interval of the peaks is aboutV + 1ε. Finally
the state 1̄σ1 may be occupied. One can easily check that the interval is still aboutV +1ε
(see figure 2(d)).

4. Time-dependent harmonic MW fields

For simplicity, we only consider the harmonic MW fields, i.e.1α(t) = 1α cosωt
(α = L,R, d), and take the approximation forEnσ (t), Enσ (t) ≈ εnσ (t) + U〈Nnσ̄ (t)〉 +
V
∑

mσ ′(m6=n)〈Nmσ ′(t)〉. ThenAαnσ (ε, t) (α = L,R) reduces to

Aαnσ (ε, t) =
∑
k,k′

Jk

(
1α −1d

ω

)
Jk′

(
1α −1d

ω

)
ei(k−k′)wt

ε − Enσ + k′ω + i Dnσ02

(21)

where theJk are Bessel functions of the first kind. Substituting (21) into (15), we obtain the
time-dependent currentjL(t). Figure 3 showsjL(t) against timet at differentvg = −ε1 for
small bias voltage and asymmetric MW fields. From figure 3 one can find〈|j (t)|〉 � 〈j (t)〉.
It is interesting to notice that the time-dependent currentj (t) may become negative for a
certain period of time, even if the chemical potentialµL(t) has been maintained larger than
µR(t) all the time, i.e.,µL(t) = µL+1L(t) > µR(t) = µR+1(t). This behaviour will not
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Figure 2. A schematic diagram for the electronic energy levels of the dot including the e–e
interactions withU = 2, V = 1, and1ε = 0.1. (a), (b), and (c) correspond to the three lowest
numbers of electrons in the dot,N = 0, 1, 2, respectively. (d) shows the interval between the
the new occupied stateε1σ̄1 and the highest already occupied state, which is still aboutV +1ε.
The arrow gives the interval of two neighbouring peaks.

happen for a classical system, and is an essential feature of the mesoscopic system which
comes from the phase coherence.

Substituting (21) into (17), the averaged current〈j (t)〉 is obtained

〈j (t)〉 = e0L0R
∑
k,nσ

Dnσ

∫
dε

2π

[
fL(ε)J

2
k

(
1L −1d

ω

)
− fR(ε)J 2

k

(
1R −1d

ω

)]
1

(Enσ − ε − kω)2+ (Dnσ0/2)2
. (22)

Two special situations will be studied in the following.

4.1. Asymmetric case (1d = 1R = 0, 1L 6= 0)

At small dc bias voltage we obtain the characteristics of〈j〉 againstvg (see figure 4) which
has: (1) a ‘shoulder’ on the left side and a negative current on the right side of each
Coulomb oscillation peak; (2) with the increase of1L, the ‘shoulder’ getting higher and the
negative current getting larger; (3) the location of the ‘shoulder’ and the negative current
only dependent upon the frequencyω of the MW field. Our theoretical result mentioned
above is in good agreement with the experiment by Kouwenhovenet al [15].
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Figure 3. jL(t) againstt at differentvg in the presence of harmonic MW fields with only two
statesε1σ , ε1σ̄ in the dot, andU = 2, 0 = 0.2, v = 0.1. The two solid lines correspond to
vg = −ε1 = 0.3, 1, respectively. The parameters of the MW fields are:ω = 0.3, 1L/ω = 0.7,
1R/ω = 0.4, 1d/ω = 0. The dotted line showsv(t) = µL(t)− µR(t) againstt (drawn not to
scale).

Figure 4. 〈j〉 againstvg for MW field only applied on the left lead (asymmetric case). Where
ω = 0.3, 1L/ω = 0.5, 0.7 respectively. Other parameters are the same as in figure 1(b).

4.2. Symmetric case (1L = 1R, 1d = 0)

Figure 5 shows the averaged current〈j〉 againstvg in which many additional peaks emerge.
When ω < V , the additional peaks are located atnh̄ω (n = ±1,±2, . . .) from the
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Figure 5. 〈j〉 againstvg for symmetric MW fields applied on the two leads, wherev = 0.1,
0 = 0.04, U = 2.2, V = 1, 1/ω = 0.7. Three degenerate levels in the dot (D = 3) are
considered, withω = 0.3 in (a) andω = 1.5 in (b). (For descriptions of the peaks marked with
A and B see text); two levels with1ε = 0.4 andω = 0.7 in (c). (d) illustrates the location of
the state in the dot corresponding to the X-peak atvg = 1.7.

original Coulomb oscillation peaks, but are asymmetric to the main peak (figure 5(a)). The
asymmetry comes from the difference of the number of states participating in the photon-
assisted-tunnelling (PAT) processes. Our result is in good agreement with the experiment
by Drexleret al [17].

When ω > V , one can find three kinds of peak: the first is the original Coulomb
oscillation peaks; the second is the peaks marked with ‘A’ (in figure 5(b) only one of them
is shown); the third one is the peaks marked with ‘B’. The A-type peak is the conventional
PAT peak which is located atnh̄ω from the main peak. The B-type peak is still a PAT
peak, but is not located atnh̄ω from the main peak. As an example let us consider the first
B-type peak located atvg = U − ω. It is the PAT process originating from the unoccupied
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state (1̄σ ) with the energy ofε1σ̄ + U .
It is interesting to notice that even whenω < V , if a certain condition is satisfied, the

peaks not located atnh̄ω from the main peak still may emerge, as well as the conventional
PAT peaks. In figure 5(c) one such peak marked with ‘X’ is shown. It can be understood
by a similar PAT process as the B-type peak mentioned above. Different from the B-type
peak, the ‘X’ peak is the PAT process originating from the state (1σ ) with the energy of
ε1σ + V . Figure 5(d) illustrates the electronic states in which this PAT process happens.
This is well consistent with the experimental result of Blicket al [16] (see figure 3(b) in
their paper). To our knowledge, no explanation has been given for this ‘X’ peak before.

5. Conclusions

In this paper we use the nonequilibrium-Green-function method to study the time-dependent
tunnelling through a quantum dot with Coulomb interactions. In the absence of MW fields,
we address a new explanation for Coulomb oscillation peaks. In the presence of harmonic
MW fields, our theoretical results forj (t) and 〈j (t)〉 display a diverse behaviour in the
different cases. The Coulomb oscillation peaks reveal a fine structure for both symmetric and
asymmetric external MW field cases, and they are in good agreement with the experimental
results. However, in comparison to the experiment by Kouwenhovenet al, we could not
obtain the changes from peak to peak. The reason might be the energy dependence and the
electron-occupation dependence of0.
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